Desorption electro-flow focusing ionization of explosives and narcotics for ambient pressure mass spectrometry.

نویسندگان

  • Thomas P Forbes
  • Tim M Brewer
  • Greg Gillen
چکیده

Desorption electro-flow focusing ionization (DEFFI), a desorption-based ambient ion source, was developed, characterized, and evaluated as a possible source for field deployable ambient pressure mass spectrometry (APMS). DEFFI, based on an electro-flow focusing system, provides a unique configuration for the generation of highly charged energetic droplets for sample analysis and ionization. A concentrically flowing carrier gas focuses the liquid emanating from a capillary through a small orifice, generating a steady fluid jet. An electric field is applied across this jet formation region, producing high velocity charged droplets that impinge on an analyte laden surface. This configuration separates the jet charging region from the external environment, eliminating detrimental effects from droplet space charge or target surface charging. The sample desorption and ionization processes operate similar to desorption electrospray ionization (DESI). DEFFI demonstrated strong signal intensities and improved signal-to-noise ratios in both positive and negative mode mass spectrometry for narcotics, i.e., cocaine, and explosives, i.e., cyclotrimethylenetrinitramine (RDX), respectively. A characterization of DEFFI ionization mechanisms identified operation regimes of both electrospray and corona discharge based analyte ionization, as well as limitations in overall signal. In addition, the DEFFI response was directly compared to DESI-MS under similar operating conditions. This comparison established a wider and more stable optimal operating range, while requiring an order of magnitude lower applied gas pressure and applied potential for DEFFI than DESI. These reductions are due to the physical mode of jet formation and geometric configuration differences between DEFFI and DESI, pointing to a potential benefit of DEFFI-MS for field implementation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical imaging of artificial fingerprints by desorption electro-flow focusing ionization mass spectrometry.

Desorption electro-flow focusing ionization (DEFFI) mass spectrometry was used to image chemical distributions of endogenous, e.g., fatty acids, and trace exogenous compounds, e.g., explosives, narcotics and lotions, in deposited and lifted artificial fingerprints, directly from forensic lift tape. An artificial fingerprint mold and synthetic fingerprint material were incorporated for the contr...

متن کامل

Non-proximate detection of explosives and chemical warfare agent simulants by desorption electrospray ionization mass spectrometry.

Desorption electrospray ionization (DESI) mass spectrometry is used for the selective and sensitive detection of trace amounts of explosives and chemical warfare agent simulants from ambient surfaces at distances of up to 3 meters from the mass spectrometer.

متن کامل

Analysis of nitrogen-based explosives with desorption atmospheric pressure photoionization mass spectrometry.

RATIONALE Fast methods that allow the in situ analysis of explosives from a variety of surfaces are needed in crime scene investigations and home-land security. Here, the feasibility of the ambient mass spectrometry technique desorption atmospheric pressure photoionization (DAPPI) in the analysis of the most common nitrogen-based explosives is studied. METHODS DAPPI and desorption electrospra...

متن کامل

Detecting Trace Explosives and Formulations Using Laser Electrospray Mass Spectrometry

Mass analysis using laser electrospray mass spectrometry (LEMS) is demonstrated for the detection of trace samples of explosives at atmospheric pressure directly from a substrate. A non-resonant femtosecond duration laser pulse vaporizes native samples at atmospheric pressure for subsequent electrospray ionization and transfer into a mass spectrometer. LEMS was used to detect < 1 µg of 2,3-dime...

متن کامل

Ion Transport and Focal Properties of an Ellipsoidal Electrode Operated at Atmospheric Pressure

Most frequently, ions are transported from ambient pressure and manipulated under low pressure conditions. While a vacuum environment is necessary to make precise measurements of an ion’s mass-to charge ratio, the ability to effectively control ion trajectories and spatially manipulate ions without the use of vacuum systems is of great interest in a number of different fields. Modifications to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Analyst

دوره 138 19  شماره 

صفحات  -

تاریخ انتشار 2013